

Modeling QCD for Hadron Physics

Peter Tandy KENT STATE

 Center for Nuclear Research Kent State University, Ohio USA

Topics

- Overview of DSE modeling-mainly soft scale
- Masses, decays, form factors--maínly mesons
- Nucleon form factors
- Hard scale: DIS valence $u(x)$ in pion, kaon; qQ mesons
- Is $\langle\bar{q} q\rangle_{\mu}^{0}$ really an in-hadron condensate?

Lattice-QCD and DSE-based modeling

- Lattice: $\langle\mathcal{O}\rangle=\int D \bar{q} q G \mathcal{O}(\bar{q}, q, G) e^{-\mathcal{S}[\bar{q}, q, G]}$
- Euclidean metric, x-space, Monte-Carlo
- Issues: lattice spacing and vol, sea and valence m_{q}, fermion Det
- Large time limit \Rightarrow nearest hadronic mass pole
- EOMs (DSEs): $0=\int D \bar{q} q G \frac{\delta}{\delta q(x)} e^{-\mathcal{S}[\bar{q}, q, G]+(\bar{\eta}, q)+(\bar{q}, \eta)+(J, G)}$
- Euclidean metric, p-space, continuum integral eqns
- Issues: truncation and phenomenology - not full QCD
- Analtyic contin. \Rightarrow nearest hadronic mass pole
- Can be quick to identify systematics, mechanisms, ...

DSE-based modeling of Hadron Physics

- Soft physics: truncate DSEs to min: 2-pt, 3-pt fns
- Should be relativistically covariant--convenient for decays, Form Factors, etc
- No boosts needed on wavefns of recoiling bound st.
- $\quad \infty$ d.o.f. \rightarrow few quasi-particle effective d.o.f.
- Do not make a 3-dimensional reduction
- Preserve 1-loop QCD renorm group behavior in UV
- Preserve global symmetries, conserved em currents, etc
- Preserve PCAC \Rightarrow Goldstone's Thm
- Can't preserve local color gauge covariance--just choose Landau gauge [RG fixed pt]
- Parameterize the deep infrared (large distance) QCD coupling

Constraints on Modeling

- Preserve vector WTI, and axial vector WTI E.g.

$$
-i P_{\mu} \Gamma_{5 \mu}(k ; P)=S^{-1}\left(k_{+}\right) \gamma_{5} \frac{\tau}{2}+\gamma_{5} \frac{\tau}{2} S^{-1}\left(k_{-}\right)
$$

$$
-2 m_{q}(\mu) \Gamma_{5}(k ; P)
$$

- \Rightarrow kernels of DSE_{q} and K_{BSE} are related
- Ladder-rainbow is the simplest implementation
- Goldstone Theorem preserved, ps octet masses good, indep of model details
- DCSB $\Rightarrow \pi: \quad \Gamma_{\pi}^{0}\left(p^{2}\right)=\frac{i \gamma_{5}}{f_{\pi}^{0}}\left[\frac{1}{4} \operatorname{tr} S_{0}^{-1}\left(p^{2}\right)\right]+\cdots$
- Here, 1-body and 2-body systems are the same

Ladder-Rainbow Model

- $K_{\mathrm{BSE}} \rightarrow-\gamma_{\mu} \frac{\lambda^{a}}{2} 4 \pi \alpha_{\mathrm{eff}}\left(q^{2}\right) D_{\mu \nu}^{\mathrm{free}}(q) \gamma_{\nu} \frac{\lambda^{a}}{2}$
- $\alpha_{\text {eff }}\left(q^{2}\right) \overrightarrow{I R}\langle\bar{q} q\rangle_{\mu=1 \mathrm{GeV}}=-(240 \mathrm{MeV})^{3}$, incl vertex dressing
- $\alpha_{\text {eff }}\left(q^{2}\right) \xrightarrow[U V]{\overrightarrow{U V}} \alpha_{s}^{1-\text { loop }}\left(q^{2}\right)$

- P. Maris \& P.C. Tandy, PRC60, 055214 (1999) $M_{\rho}, M_{\phi}, M_{K^{\star}}$ good to $5 \%, \quad f_{\rho}, f_{\phi}, f_{K^{\star}}$ good to 10%

Summary of light meson results
$m_{u=d}=5.5 \mathrm{MeV}, m_{s}=125 \mathrm{MeV}$ at $\mu=1 \mathrm{GeV}$
Pseudoscalar (PM, Roberts, PRC56, 3369)

	expt.	calc.
$-\langle\bar{q} q\rangle_{\mu}^{0}$	$(0.236 \mathrm{GeV})^{3}$	$\left(0.241^{\dagger}\right)^{3}$
m_{π}	0.1385 GeV	0.138^{\dagger}
f_{π}	0.0924 GeV	0.093^{\dagger}
m_{K}	0.496 GeV	0.497^{\dagger}
f_{K}	0.113 GeV	0.109

Charge radii (PM, Tandy, PRC62, 055204)

r_{π}^{2}	$0.44 \mathrm{fm}^{2}$	0.45
$r_{K^{+}}^{2}$	$0.34 \mathrm{fm}^{2}$	0.38
$r_{K^{0}}^{2}$	$-0.054 \mathrm{fm}^{2}$	-0.086

$\gamma \pi \gamma$ transition (PM, Tandy, PRC65, 045211)

$g_{\pi \gamma \gamma}$	0.50	0.50
$r_{\pi \gamma \gamma}^{2}$	$0.42 \mathrm{fm}^{2}$	0.41

Weak $K_{l 3}$ decay

$\lambda_{+}(e 3)$	0.028	0.027
$\Gamma\left(K_{e 3}\right)$	$7.6 \cdot 10^{6} \mathrm{~s}^{-1}$	7.38
$\Gamma\left(K_{\mu 3}\right)$	$5.2 \cdot 10^{6} \mathrm{~s}^{-1}$	4.90

bsampl

Vector mesons (PM, Tandy, PRC60, 055214)

$m_{\rho / \omega}$	0.770 GeV	0.742
$f_{\rho / \omega}$	0.216 GeV	0.207
$m_{K^{\star}}$	0.892 GeV	0.936
$f_{K^{\star}}$	0.225 GeV	0.241
m_{ϕ}	1.020 GeV	1.072
f_{ϕ}	0.236 GeV	0.259

Strong decay (Jarecke, PM, Tandy, PRC67, 035202)

$g_{\rho \pi \pi}$	6.02	5.4		
$g_{\phi K K}$	4.64	4.3		
$g_{K^{\star} K \pi}$	4.60	4.1		Radiative decay
:---				
$g_{\rho \pi \gamma} / m_{\rho}$ 0.74 0.69 $g_{\omega \pi \gamma} / m_{\omega}$ 2.31 2.07 $\left(g_{K^{\star} K \gamma} / m_{K}\right)^{+}$ 0.83 0.99 $\left(g_{K^{\star} K \gamma} / m_{K}\right)^{0}$ 1.28 1.19		(PM, nucl-th/0112022)		
:---				

Scattering length	(PM, Cotanch, PRD66, 116010)	
a_{0}^{0}	0.220	0.170
a_{0}^{2}	0.044	0.045
a_{1}^{1}	0.038	0.036

Qu-lattice $S(p), D(q)$ mapped to a DSE kernel

$$
S(p)=Z(p)[i \not p+M(p)]^{-1}
$$

Quenched lattice $\Rightarrow m_{q}$ Depn of DSE Kernel

Bhagwat,Pichowsky,Roberts, Tandy, PRC68, 015203 (2003)

DSE and Lattice results for M_{V} and $M_{p s}$

Pion electromagnetic form factor

$$
\Lambda_{\mu}=\left(P^{\prime}+P\right)_{\mu} F_{\pi}\left(Q^{2}\right)=N_{c} \int \frac{d^{4} q}{(2 \pi)^{4}} \operatorname{Tr}\left[\bar{\Gamma}^{\pi} S i \Gamma_{\mu} S \Gamma^{\pi} S\right]
$$

Pion $F\left(Q^{2}\right)$: Low Q^{2}

(P Maris \& PCT, PRC 61, 045202 (2000) (P. Maris \& PCT, PRC 62, 0555204 (2000)

$$
r_{\pi}^{\mathrm{DSE}}=0.68 \mathrm{fm} \quad r_{\pi}^{\mathrm{expt}}=0.663 \pm .006 \mathrm{fm}
$$

Pion electromagnetic form factor

PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015]

Pion electromagnetic form factor

JLab data from Volmer et al, PRL86, 1713 (2001) [nucl-ex/0010009] PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015]

Pion electromagnetic form factor

PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015]
2006a: V. Tadevosyan et al, [nucl-ex/0607007], 2006b: T. Horn et al, [nucl-ex/0607005]

1-loop chiral correction to r_{π} vs m_{π}

P. Maris and PCT, in preparation

1-loop chiral correction to r_{π} vs m_{π}

P. Maris and PCT, in preparation

$\gamma^{\star} \pi^{0} \rightarrow \gamma$ Transition Form Factor

- Abelian axial anomaly $+\pi$ pole in $\Gamma_{5 \mu} \Rightarrow G(0,0)$
- Chiral limit $G(0,0)=\frac{1}{2}$ $\Rightarrow \Gamma_{\pi \gamma \gamma}$ to 2%

$\gamma^{\star} \pi \gamma^{\star}$ Asymptotic Limit

Lepage and Brodsky, PRD22, 2157 (1980): LC-QCD/OPE \Rightarrow

$\pi-\gamma$ Transition Form Factor: $\gamma^{\star}\left(Q^{2}\right)+\pi \rightarrow \gamma$

LR: Successes, Problems, Resolutions

- Successes:
- S-wave mesons, PS and V, light quarks and QQ, no spurious thresholds
- Exact PS mass formula, Goldstone Thm, $\Delta M_{H F}$ from DCSB
- $f_{E W}$, strong decays, radiative decays, form factors, $Q^{2}<5 \mathrm{GeV}^{2}$
- Problems:
- Axial vector $(L>0)$ mesons $\left(a_{1}, b_{1}, \cdots\right)$ too light
- Physical diquarks, no physical V or PS $q Q$ states
- Excited states are difficult
- Probable Resolution:
- Quark-gluon vertex: $\Gamma_{\mu} \Rightarrow \Sigma_{q} \Rightarrow K_{B S E}$
- Use analysis of spacelike correlators, 3-pt functions

Deep Inelastic Lepton Scattering

- PDFs: $u_{\pi}(x), u_{K}(x), s_{\pi}(x)$
- Drell-Yan data exists
- Pion and Kaon/Pion Ratio

- Employ LR DSE model
- Bjorken limit

Leading order in OPE

DIS is hard and fast - confinement is soft and slow

$$
\Rightarrow S(k+q) \rightarrow \frac{\gamma^{+}}{2\left(k^{+}-P^{+} x\right)+i \epsilon}
$$

$$
\begin{array}{cl}
q^{+}=q \cdot n=-P^{+} x, & \left|\xi^{-}\right| \sim \frac{1}{M x} \\
q^{-}=q \cdot p=2 \nu, & \left|\xi^{+}\right| \sim 0
\end{array}
$$

$$
\begin{aligned}
q_{f}(x) & =\frac{1}{4 \pi} \int d z^{-} e^{-i x P^{+} z^{+}}\langle\pi(P)| \bar{\psi}_{f}\left(z^{-}\right) \gamma^{+} \psi_{f}(0)|\pi(P)\rangle_{c}=-q_{\bar{f}}(-x) \\
N_{f}^{v} & =\int_{0}^{1} d x\left[q_{f}(x)-q_{\bar{f}}(x)\right]=\frac{1}{2 P^{+}}\langle\pi(P)| J^{+}(0)|\pi(P)\rangle_{c}=1
\end{aligned}
$$

From DSE-BSE at ladder-rainbow truncation

$W^{\mu \nu} \propto\left\{T^{\mu \nu}(\epsilon)-T^{\mu \nu}(-\epsilon)\right\} \Rightarrow$ Euclidean model elements can be continued

$$
\begin{gathered}
q_{f}^{v}(x)=\frac{i}{2} \operatorname{tr}_{\mathrm{cd}} \int_{p}^{\Lambda} \Gamma_{\pi}(p, P) S(p) \Gamma^{+}(p ; x) S(p) \Gamma_{\pi}(p, P) S(p-P) \\
\Gamma^{+}(p ; x)=\gamma^{+} \delta\left(p^{+}-x P^{+}\right)+\cdots
\end{gathered}
$$

Valence $u_{\pi}(x)$ from DSE-BSE solutions

- Valence quarks, handbag díagram
- Data: Conway et al, PRD39, 92 (1989). $M_{\bar{l}}=4.05 \mathrm{GeV}$
- Prev DSE (phen): Hecht et al, PRC63, 025213 (2001), $\Gamma_{\pi}\left(k^{2}, k \cdot P=0\right) \sim i \gamma_{5} B_{0}\left(k^{2}\right) / f_{\pi}^{0}+\cdots$ $S_{\text {phen }}(k)$
- Large \times behavior: $(1-x)^{\alpha}, \alpha=$?
- T. Nguyen, PhD 2009, KSU, Nguyen\&PCT, in preparation 2010

- Wijesooríya, Reímer\&Holt, PRC72, 065203 (2005)

Momentum Sum Rule: $\langle x\rangle_{Q_{0}^{2}}=0.76$

$u_{\pi}(x)$ at large $\mathrm{x} ; \mathrm{pQCD}$

- Scale for PQCD onset is model-depn.
- Global DIS fits: $\alpha \sim 1.5$
- Const. q models, NJL, duality: $\alpha \sim 1$
- PQCD: Farrar-Jackson, Brodsky, Ezawa, DSEs:

$$
\alpha=2+\gamma\left(Q^{2}\right)
$$

Quark Distributions in π and K

Evolved to $\mathrm{q}=4.05 \mathrm{GeV}$

- Environmental depn of $u(x)$ in accordance with effective quark mass
- $u(x), s(x)$ difference in K in accordance with effective quark mass

Environmental Dependence of Valence $u(x)$

-Bashir, Nguyen, Roberts, Souchlas, PCT, in prep (2010)

- CERN-SPS data: J. Badier et al, PLB 93, 354 (1980)

Flavor Non-singlet PS Mass Relation

$$
f_{H} m_{H}^{2}=2 m_{q}(\mu) \rho_{H}(\mu)
$$

$$
\begin{gathered}
i f_{\pi} P_{\mu}=\langle 0| \bar{q} \gamma_{5} \gamma_{\mu} q|\pi\rangle \\
i \rho_{\pi}=-\langle 0| \bar{q} i \gamma_{5} q|\pi\rangle \\
\frac{\lim }{m \rightarrow 0} f_{\pi} \rho_{\pi}=-\langle\bar{q} q\rangle_{\mu} \\
-\langle\bar{q} q\rangle_{\mu}^{\pi}=f_{\pi}(m) \rho_{\pi}(m)
\end{gathered}
$$

PM, Roberts, Tandy, PLB420, 267 (1998) [nucl-th/9707003]

In-hadron Condensates

$$
\begin{aligned}
& -\langle\bar{q} q\rangle_{\mu}^{\pi}=-f_{\pi}\langle 0| \bar{q} \gamma_{5} q|\pi\rangle_{\mu}=f_{\pi}^{2} m_{\pi}^{2} / 2 m(\mu) \\
& \frac{\lim }{m \rightarrow 0}\langle\bar{q} q\rangle_{\mu}^{\pi}=-Z_{4}(\mu, \Lambda) \operatorname{tr}_{\mathrm{cd}} \int_{q}^{\Lambda} S_{0}(q, \mu)=\langle\bar{q} q\rangle_{\mu}^{0}
\end{aligned}
$$

$\langle\bar{q} q\rangle_{\mu}^{0}$ is really a property of the PS Goldstone boson BSE wavefunction
Brodsky \& Shrock: confinement \& DCSB introduce an IR mass scale or max wavelength for virtual fields in hadrons

Brodsky, Roberts, Shrock \& PCT, arXiv:1005.4610
"Essence of the vacuum quark condensate"
Implications for Cosmological Const, and DCSB in Light-Front Field Theory

Nucleon-Photon Vertex

constructed systematically ... current conserved automatically for on-shell nucleons described by Faddeev Amplitude

Tab, Mry 19, 2000, 20

Axial anomaly and $\eta-\eta^{\prime}$ states

- Ch symm: $\partial_{\mu}(z)\left\langle j_{5 \mu}^{\alpha}(z) q(x) \bar{q}(y)\right\rangle$ involves $2 \operatorname{tr}_{\mathrm{f}}\left(\mathcal{F}^{\alpha}\right)\left\langle Q_{t}(z) q(x) \bar{q}(y)\right\rangle$
- Matrix elements, amputated $\Rightarrow \mathrm{AV}-\mathrm{WTI}$

$$
\begin{aligned}
& P_{\mu} \Gamma_{5 \mu}^{\alpha}(k ; P)=-2 i \mathcal{M}^{\alpha \beta} \Gamma_{5}^{\beta}(k ; P)-\delta_{\alpha, 0} \Gamma_{A}(k ; P) \\
& +S^{-1}\left(k_{+}\right) i \gamma_{5} \mathcal{F}^{\alpha}+i \gamma_{5} \mathcal{F}^{\alpha} S^{-1}\left(k_{-}\right)
\end{aligned}
$$

- Residues at PS poles \Rightarrow PS mass formula for arbitrary m_{q}, any flavor:

$$
\begin{gathered}
m_{p}^{2} f_{p}^{\alpha}=2 \mathcal{M}^{\alpha \beta} \rho_{p}^{\beta}+\delta^{\alpha, 0} n_{p}, \quad n_{p}=2 \operatorname{tr}_{\mathrm{f}}\left(\mathcal{F}^{0}\right)\langle 0| Q_{t}|p\rangle \\
\rho_{p}^{\alpha}(\mu)=\langle 0| \bar{q} \gamma_{5} \mathcal{F}^{\alpha} q|p\rangle, \quad p=\text { any PS }
\end{gathered}
$$

--[Bhagwat, Chang, Liu, Roberts, PCT, PRC (76), 2007; arXiv:0708.1118]

$\pi^{0}-\eta-\eta^{\prime}$ mixing: 3 flavors

- $m_{u}-m_{d}$ causes π^{0} to be mixed in:
$135 \mathrm{MeV}: \quad\left|\pi^{0}\right\rangle \sim 0.72 \bar{u} u-0.69 \bar{d} d-0.013 \bar{s} s$
$455 \mathrm{MeV}: \quad|\eta\rangle \sim 0.53 \bar{u} u+0.57 \bar{d} d-0.63 \bar{s} s$
$922 \mathrm{MeV}: \quad\left|\eta^{\prime}\right\rangle \sim 0.44 \bar{u} u+0.45 \bar{d} d+0.78 \bar{s} s$
- $m_{u}=m_{d} \Rightarrow$
$455 \mathrm{MeV}: \quad|\eta\rangle \sim 0.55(\bar{u} u+\bar{d} d)-0.63 \bar{s} s, \quad \theta_{\eta}=-15.4^{\circ}$
$924 \mathrm{MeV}: \quad\left|\eta^{\prime}\right\rangle \sim 0.45(\bar{u} u+\bar{d} d)+0.78 \bar{s} s, \quad \theta_{\eta^{\prime}}=-15.7^{\circ}$
- Chiral limit: $m_{\eta^{\prime}}^{2}=(0.852 \mathrm{GeV})^{2} \equiv 2 \operatorname{tr}_{\mathrm{f}}\left(\mathcal{F}^{0}\right)\langle 0| Q_{t}\left|\eta^{\prime}\right\rangle / f_{\eta^{\prime}}^{0}$
- cf Witten-Veneziano a-v ghost scenario $\Rightarrow m_{\eta^{\prime}}^{2}=h^{2}+m_{\mathrm{GB}}^{2}$
- It is worth extending to a realistic LR model for K_{N} with separable K_{A} : one obtains access to decay constants, residues, and details of the mass relations

Quark mass functions from DSE solutions

Constituent Mass Concept for c- and b-quarks

	All GeV	D(uc)	D* (uc)	$\mathrm{D}_{s}(\mathrm{sc})$	$\mathrm{D}_{s}^{*}(\mathrm{sc})$	
	expt M	1.86	2.01	1.97	2.11	
	calc M	1.85(FIT)	2.04	1.97	2.17	
	expt f	0.222	?	0.294	?	
	calc f	0.154	0.160	0.197	0.180	
All GeV	B(ub)	B* (ub)	$\mathrm{B}_{s}(\mathrm{sb})$	$\mathrm{B}_{s}^{*}(\mathrm{sb})$	$\mathrm{B}_{c}(\mathrm{cb})$	$\mathrm{B}_{c}^{*}(\mathrm{cb})$
expt M	5.28	5.33	5.37	5.41	6.29	?
calc M	5.27(FIT)	5.32	5.38	5.42	6.36	6.44
expt f	0.176	?	?	?	?	?
calc f	0.105	0.182	0.144	0.20	0.210	0.18

- Fit \Rightarrow constituent masses: $M_{c}^{\text {cons }}=2.0 \mathrm{GeV}, M_{b}^{\text {cons }}=5.3 \mathrm{GeV}$
- Consistent with $M^{D S E}\left(p^{2} \sim-M^{2}\right)$ generated by $m_{c}=1.2 \pm 0.2, \quad m_{b}=4.2 \pm 0.2$, [PDG, $\mu=2 \mathrm{GeV}$]
- Does heavy quark dressing contribute anything? Too much in this DSE model-no mass shell!

Quarkonia

All GeV	$M_{\eta_{c}}$	$f_{\eta_{c}}$	$M_{J / \psi}$	$f_{J / \psi}$
expt	2.98	0.340	3.09	0.411
calc with $M_{c}^{\text {cons }}$	3.02	0.239	3.19	0.198
calc with $\Sigma_{c}^{\mathrm{DSE}}\left(p^{2}\right)$	3.04	0.387	3.24	0.415

All GeV	$M_{\eta_{b}}$	$f_{\eta_{b}}$	M_{Υ}	f_{Υ}
expt	$9.4 ?$	$?$	9.46	0.708
calc with $M_{b}^{\text {cons }}$	9.6	0.244	9.65	0.210
calc with $\Sigma_{b}^{\mathrm{DSE}}\left(p^{2}\right)$	9.59	0.692	9.66	0.682

- QQ and $q \mathrm{Q}$ decay constants too low by $30-50 \%$ in constituent mass approximation
- Quarkonia decay constants much better for DSE dressed quarks (within 5% of expt.)
- IR sector (gluon k below $\sim 0.8 \mathrm{GeV}$) contribute little for bb or cc quarkonia in DSE, BSEs
- $Q Q$ states are more point-like than $q q$ or $q Q$ states

Recovery of a qQ Mass Shell

- Suppress gluon k below $\sim 0.8 \mathrm{GeV}$ in DSE dressing of b propagator
- Retain IR sector for dressed "light" quark and BSE kernel
- Now a mass shell is produced

All GeV	$\mathrm{B}(\mathrm{ub})$	$\mathrm{B}^{*}(\mathrm{ub})$	$\mathrm{B}_{s}(\mathrm{sb})$	$\mathrm{B}_{s}^{*}(\mathrm{sb})$	$\mathrm{B}_{c}(\mathrm{cb})$	$\mathrm{B}_{c}^{*}(\mathrm{cb})$
expt M	5.28	5.33	5.37	5.41	6.29	$?$
calc M	4.66	-	4.75	-	5.83	-
expt f	0.176	$?$	$?$	$?$	$?$	$?$
calc f	0.133	-	0.164	-	0.453	-

- Masses are ~ 10 \% low
- It makes sense that $R_{b}<R_{q Q} \Rightarrow$ greater limit on low k in Σ_{b}
- May be partial confirmation of Brodsky and Shrock's suggestion of universal maximum wavelength for quarks/gluons in hadrons [Phys. Lett. B666, (2008)]

The V-A Current Correlator

- $\quad \Pi_{\mu \nu}^{V}(x)=\langle 0| T j_{\mu}(x) j_{\nu}^{\dagger}(0)|0\rangle, \quad$ isovector currents $j_{\mu}=\bar{u} \gamma_{\mu} d, \quad j_{\mu}^{5}=\bar{u} \gamma_{5} \gamma_{\mu} d$

$$
\begin{gathered}
\Pi_{\mu \nu}^{V}(P)=\left(P^{2} \delta_{\mu \nu}-P_{\mu} P_{\nu}\right) \Pi^{V}\left(P^{2}\right) \\
\Pi_{\mu \nu}^{A}(P)=\left(P^{2} \delta_{\mu \nu}-P_{\mu} P_{\nu}\right) \Pi^{A}\left(P^{2}\right)+P_{\mu} P_{\nu} \Pi^{L}\left(P^{2}\right)
\end{gathered}
$$

- $m_{q}=0: \quad \Pi^{V}-\Pi^{A}=0$, to all orders in pQCD
- $\Pi^{V}-\Pi^{A}$ probes the scale for onset of non-perturbative phenomena in QCD

Physics from the V-A correlator:

OPE:

$$
\Pi^{V-A}\left(P^{2}\right)=\frac{32 \pi \alpha_{s}\langle\bar{q} q \bar{q} q\rangle}{9 P^{6}}\left\{1+\frac{\alpha_{s}}{4 \pi}\left[\frac{247}{4 \pi}+\ln \left(\frac{\mu^{2}}{P^{2}}\right)\right]\right\}+\mathcal{O}\left(\frac{1}{P^{8}}\right)
$$

Model	$-<\bar{q} q>_{\mu=19}(\mathrm{GeV})^{3}$	$\left\langle\bar{q} q \bar{q} q>_{\mu=19}(\mathrm{GeV})^{6}\right.$	$R(\mu=19)$
LR DSE	$(0.216)^{3}$	$(0.235)^{6}$	1.65

Weinberg et al Sum Rules:

- I: $\frac{1}{4 \pi^{2}} \int_{0}^{\infty} d s\left[\rho_{v}(s)-\rho_{a}(s)\right]=\left[P^{2} \Pi^{V-A}\left(P^{2}\right)\right]_{P^{2} \rightarrow 0}=-f_{\pi}^{2}$
- II: $\left.\quad P^{2}\left[P^{2} \Pi^{V-A}\left(P^{2}\right)\right]\right|_{P^{2} \rightarrow \infty}=0$
- DGMLY: $\int_{0}^{\infty} d P^{2}\left[P^{2} \Pi^{V-A}\left(P^{2}\right)\right]=-\frac{4 \pi f_{\pi}^{2}}{3 \alpha}\left[m_{\pi^{ \pm}}^{2}-m_{\pi^{0}}^{2}\right]$

Model	$f_{\pi}^{2}\left(\mathrm{GeV}^{2}\right)$	$f_{\pi}(\mathrm{MeV})$	$f_{\pi}^{\text {exp }} / f_{\pi}^{n u m}$	$\Delta m_{\pi}(\mathrm{MeV})$	$\left(\Delta m_{\pi}\right)_{\text {exp }}$
LR DSE	0.0081	90.0	1.03	4.88	4.43 ± 0.03

Summary

- Effective ladder-rainbow model based on QCD -DSEs; $\langle\bar{q} q\rangle_{\mu} \Rightarrow 1$ IR parameter
- Convenient and covariant approach to hadronic form factors: N, π, various transitions
- Ground state qQ and QQ mesons (V \& PS) up to b-quark region
- Dynamical dressing in $S(p)$ at each stage increases the value of the decay constant [factor of 3 for $\bar{b} b$, factor of 2 for $\bar{c} c$]!
- First combination of BSE-DSE solutions for pion and kaon DIS distributions $u(x), s(x)$
- Used $\langle J J\rangle$, V-A, to estimate $\langle\bar{q} q \bar{q} q\rangle$ as $\sim 70 \%$ greater than vac saturation, and npQCD enters at scale 0.5 fm .

Collaborators

- Craig Roberts, Argonne National Lab
- Pieter Maris, lowa State University
- Yu-xin Liu, Lei Chang, Peking University
- Nick Souchlas, Trang Nguyen, Kent State University

Thankyou!

Inaccuracy of GMOR

$q Q$ case:

GMOR: $0.2 \%(\pi) ; \quad 4 \%(\mathrm{~K}) ; \quad 14 \%(0.4 \mathrm{GeV}) ; \quad 30 \%(\mathrm{D})$

Compare Quark Masses with PDG

46

From Gluon vertex to BSE Kernel

- A symmetry-preserving procedure [Bender, Roberts, von Smekal, PLB380, (1996), nucl-th/9602012; Munczek 1995] ; Axial vector and vector WTIs, and Goldstone Thm preserved
- $K_{\mathrm{BSE}}\left(x^{\prime}, y^{\prime} ; x, y\right)=-\frac{\delta}{\delta S(x, y)} \Sigma\left(x^{\prime}, y^{\prime}\right)$
- Vertex $\Gamma_{\mu}(p, q)=\sum$ diagrams $\Rightarrow K_{\mathrm{BSE}}=\sum$ diagrams
- If Σ contains:
- K_{BSE} contains:

- Independent of model parameters. Model does not fight chiral symmetry, use light vector mesons to fix parameters

Quark Confinement-positivity violation

- Confinement/positivity analysis (Osterwalder-Schrader axiom No. 3)
- Fourier transf $\sigma_{S}\left(p_{4}, \vec{p}=0\right)$ to Eucl time T

solid 48 lattice prop, dashed $=$ MT DSE, dotted $=$ cc pole eg

DSE kernel constrained from Lattice QCD

—Bhagwat,Pichowsky,Roberts,Tandy, PRC68, 015203 (03)

- Qu-lattice $D_{\text {gluon }}(q)$

Leinweber, Bowman et al
PRD60, hep-lat/9811027

- Find $\Gamma_{\nu}^{\mathrm{eff}}(q, p)$ so DSE produces
$S_{\text {latt }}(p)$ from $D_{\text {latt }}(q)$

$$
g^{2} \gamma_{\mu} D(p-q) Z_{1 \mathrm{~F}}(\mu, \Lambda) \Gamma_{\nu}(q, p) \rightarrow \gamma_{\mu} g^{2} D(p-q) \gamma_{\nu} V(p-q)
$$

UV limit: $\quad g^{2} D\left(k^{2}\right) V\left(k^{2}\right) \rightarrow \underset{49}{\frac{4 \pi \alpha_{\mathrm{s}}^{1-\text { loop }}\left(k^{2}\right)}{k^{2}}}$

Kaon $F\left(Q^{2}\right)$: Low Q^{2}

- Impulse approx + rainbow/ladder \Rightarrow conserved em current, correct charge of K^{+}and K^{0}

charge radii	experiment	DSE calc
r_{π}^{2}	$0.44 \pm 0.01 \mathrm{fm}^{2}$	$0.45 \mathrm{fm}^{2}$
$r_{K^{+}}^{2}$	$0.34 \pm 0.05 \mathrm{fm}^{2}$	$0.38 \mathrm{fm}^{2}$
$r_{K^{0}}^{2}$	$-0.054 \pm 0.026 \mathrm{fm}^{2}$	$-0.086 \mathrm{fm}^{2}$

Constituent Quark-like Behavior for c, b-quarks

- Mass shell positions marked for $\bar{b} b$ and $\bar{c} c$ quarkonia
- qQ mesons sample $M_{Q}\left(p^{2}\right) \sim 4$ times further into timelike region
- The same constituent or pole mass is unlikely to suffice for QQ and qQ mesons1

General Pseudoscalar Mass Formula

- $N_{f}=3$, charge neutral states: $p=\pi^{0}, \eta, \eta^{\prime}$

$$
m_{p}^{2}\left[\begin{array}{c}
f_{p}^{3} \\
f_{p}^{8} \\
f_{p}^{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
n_{p}
\end{array}\right]+\left[2 \mathcal{M}_{3 \times 3}\right]\left[\begin{array}{c}
\rho_{p}^{3} \\
\rho_{p}^{8} \\
\rho_{p}^{0}
\end{array}\right]
$$

- Isospin breaking: $m_{u} \neq m_{d}$ allows anomaly, \mathcal{F}^{0}, and $s \bar{s}$ into π^{0}
- η^{\prime} in $S U\left(N_{f}\right)$ limit: $m_{\eta^{\prime}}^{2} f_{\eta^{\prime}}^{0}=n_{\eta^{\prime}}+2 m \rho_{\eta^{\prime}}^{0}$

A Schematic Model: Flavor mixing, η, η^{\prime}

- [Bhagwat, Chang, Liu, Roberts, PCT, PRC (76), 2007; arXiv:0708.1118]
- Structure: $K_{N}=\mathrm{LR}$ vector gluon exch, $K_{A}=\mathcal{F}\left(\gamma_{5}, \not P \gamma_{5}\right) \otimes\left(\gamma_{5}, \not P \gamma_{5}\right) \mathcal{F}, \quad \mathcal{F}=\operatorname{diag}\left(1 / M_{f}\right)$
- (Munczek-Nemirovsky) t-channel $\delta^{4}(k)$ for K_{N} and K_{A}
- 2 strength parameters: $\rho^{0} \Rightarrow K_{N}, \quad m_{\eta^{\prime}} \Rightarrow K_{A}$.
- Fix $m_{u}, m_{d}, m_{s} \ldots$ via vector mesons

Model Bethe-Salpeter Kernel for flavor singlet?

- Vertex integral eqns do not involve $Q_{t}(x)$ explicitly: $\Gamma_{5 \mu}^{\alpha}(k ; P)=Z_{2} \gamma_{5} \gamma_{\mu} \mathcal{F}^{\alpha}+\int^{\Lambda} K S_{+} \Gamma_{5 \mu}^{\alpha} S_{-}$
- DSE models need: $K_{\mathrm{BSE}}=K_{\mathrm{N}}+K_{\mathrm{A}}$, both are $\bar{q} q$ irreducible, K_{N} is also n -gluon irreducible

- A scenario that works: Witten-Veneziano massless axial-vector ghost linking pseudoscalar GBs

c- and b-Quark Mass Function for BSE

c, b quark mass function near the peak of the parabolic region with P^{2} near the meson mass shells $\mathrm{m}_{\mathrm{c}}(19 \mathrm{GeV})=0.88 \mathrm{GeV}, \mathrm{m}_{\mathrm{b}}(19 \mathrm{GeV})=3.8 \mathrm{GeV}$

Lattice-assisted DSE Results

- Evident vertex enhancement
- Curvature in low m_{q} depn
- $M^{\mathrm{IR}}\left(p^{2}\right) 40 \%$ below linear
- Chiral Extrapolation

- $\langle\bar{q} q\rangle_{\mu=1 \mathrm{GeV}}^{\text {qu-lat }}=-(190 \mathrm{MeV})^{3}$
- $\langle\bar{q} q\rangle^{\text {qu-lat }} \approx\langle\bar{q} q\rangle^{\text {expt }} / 2$
- $f_{\pi} 30 \%$ low

IR Suppression of Kernel

Deep Inelastic Lepton Scattering

Convenient basis in Bj lim:

$$
\begin{aligned}
& n^{\nu}=\frac{M}{2 \omega}\left(1,-1 ; \overrightarrow{0}_{\perp}\right) ; n^{2}=0=p^{2} ; p \cdot n=2 . ; \omega= \\
& M / 2(\text { (rest frame }), \omega=\infty(\mathrm{IMF}) \\
& P^{\mu}=\frac{M}{2}\left(n^{\mu}+p^{\mu}\right) ; q^{\mu} \rightarrow \nu n^{\mu}+\frac{M x}{2}\left(n^{\mu}-p^{\mu}\right)+\mathcal{O}\left(\frac{1}{\nu}\right) \\
& W^{\alpha \beta} \rightarrow(a \nu+b)\left(F_{2}-2 x F_{1}\right)+\left(-g^{\alpha \beta}+n^{\alpha} \frac{P^{\beta}}{M}+\frac{p^{\alpha}}{M} n^{\beta}\right) F_{1}+\mathcal{O}\left(\frac{1}{\nu}\right) \\
& \left\{W^{\alpha \beta} q_{\beta}\right\}_{L O}=0=W^{\alpha \beta} n_{\beta}
\end{aligned}
$$

handbag diagram $\Rightarrow W_{H B}^{\alpha \beta} n_{\beta}=0$, (LO current consv)

Deep Inelastic Lepton Scattering

Bjorken limit:

$$
\begin{gathered}
\nu=q \cdot P / M \rightarrow \infty ;-q^{2}=Q^{2} \rightarrow \infty \\
0<x=\frac{Q^{2}}{2 P \cdot q}<1
\end{gathered}
$$

$$
\begin{aligned}
& W^{\alpha \beta}=-\left(g^{\alpha \beta}-\frac{q^{\alpha} q^{\beta}}{q^{2}}\right) F_{1}+\frac{P_{T}^{\alpha}(q) P_{T}^{\beta}(q)}{P \cdot q} F_{2} \\
& F_{1}(x)=\Sigma_{q} \frac{e_{q}^{2}}{2} f_{q}(x)+\cdots
\end{aligned}
$$

Deep Inelastic Lepton Scattering

$$
T^{\mu \nu}(\mathrm{LO})=T_{G H B}^{\mu \nu}=
$$

$$
\begin{aligned}
& q^{+}=q \cdot n=-M x, \quad\left|\xi^{-}\right| \sim \frac{1}{M x} \\
& q^{-}=q \cdot p=2 \nu, \quad\left|\xi^{+}\right| \sim 0
\end{aligned}
$$

DIS is hard and fast-confinement is soft and slow $\Rightarrow S(k+q) \rightarrow \frac{\gamma^{+}}{2\left(k^{+}-P^{+} x\right)+i \epsilon}$
$W^{\mu \nu} \propto\left\{T^{\mu \nu}(\epsilon)-T^{\mu \nu}(-\epsilon)\right\} \Rightarrow$ Euclidean model elements can be continued

$$
\begin{gathered}
\text { EG, } \pi^{+} \text {target : } f_{q}(x)=\frac{1}{4 \pi} \int d \xi^{-} e^{i q^{+} \xi^{-}}\langle\pi(P)| \bar{q}\left(\xi^{-}\right) \gamma^{+} q(0)|\pi(P)\rangle_{c}=-f_{\bar{q}}(-x) \\
f_{q}(x)=\frac{1}{2} \operatorname{tr} \int \frac{d^{4} k}{(2 \pi)^{4}} \delta\left(k^{+}-P^{+} x\right) S(k) \gamma^{+} S(k) T(k, P)
\end{gathered}
$$

General $T(k, P)=\bar{u} \pi^{+}$scattering amplitude:
$\begin{array}{ll}\text { s-channel structure } \rightarrow \text { "spectator } \overline{d "} \Rightarrow f_{u}(x), \quad 0<x<1 & \text { correct } \mathrm{x} \\ \text { u-channel structure } \rightarrow \text { "spectator } u \mu \bar{b}) \Rightarrow f_{\bar{u}}(-x), \quad 0<x<1 & \text { support }\end{array}$

Quenched lattice $\Rightarrow m_{q}$ Depn of DSE Kernel

Bhagwat,Pichowsky,Roberts, Tandy, PRC68, 015203 (2003)

Quenched lattice $\Rightarrow m_{q}$ Depn of DSE Kernel

Bhagwat,Pichowsky,Roberts, Tandy, PRC68, 015203 (2003)

Quenched lattice $\Rightarrow m_{q}$ Depn of DSE Kernel

Bhagwat,Pichowsky Roberts,Tandy, PRC68, 015203 (2003)

Quenched lattice $\Rightarrow m_{q}$ Depn of DSE Kernel

Bhagwat,Pichowsky:Roberts,Tandy, PRC68, 015203 (2003)

